

IEEE-ROBIO 2015

SARRT: A Structure-Aware RRT-Based Approach for 2D Path Planning

Xuefeng Chang Yanzhen Wang Xiaodong Yi Nong Xiao

changxuefengcn@163.com

yanzhenwang@hotmail.com

HPCL | School of Computer,

National University of Defense Technology, China

Dec 8th, 2015

- Background
- Method
- Results
- Conclusion

- One of the defining characteristics of robots
 - Mobility
- Need to move wisely
 - Motion/path planning
- Methods
 - Optimization-based
 - Sampling-based
 - Rapidly-exploring Random Tree (RRT)

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

RRT-based path planning

• Pros

- Exploring the space rapidly
- Efficient for high dimensional problems
- Easy to include complex constraints
- Cons
 - Unstable performance
 - Solutions far from optimal
 - Path cost not taken into account

- Contributions
 - A generic planning framework to bias the RRT growth according to given costmap
 - A costmap able to reflect the structure of the free space of the map
 - Laplacian smoothing as a postprocessing step to locally optimize the global path

Structure-Aware RRT-based path planning (SARRT)

Generic framework

Generic framework

Generic framework

Structure-aware costmap

Euclidean distance as the cost

- Structure-aware costmap
 - Mimic the diffusion process
 - By solving the diffusion equation

 $\frac{\partial \phi({\bf r},t)}{\partial t} = D \nabla^2 \phi({\bf r},t)$

- Laplacian smoothing
 - Per-vertex smoothing operation

$$\mathbf{x}_i = \frac{1}{2}(\mathbf{x}_{i-1} + \mathbf{x}_{i+1}), 2 \le i \le N - 1.$$

- Laplacian smoothing
 - Per-vertex smoothing operation

$$\mathbf{x}_i = \frac{1}{2}(\mathbf{x}_{i-1} + \mathbf{x}_{i+1}), 2 \le i \le N - 1.$$

- Laplacian smoothing
 - Per-vertex smoothing operation

$$\mathbf{x}_i = \frac{1}{2}(\mathbf{x}_{i-1} + \mathbf{x}_{i+1}), 2 \le i \le N - 1.$$

- Laplacian smoothing
 - Per-vertex smoothing operation

$$\mathbf{x}_i = \frac{1}{2}(\mathbf{x}_{i-1} + \mathbf{x}_{i+1}), 2 \le i \le N - 1.$$

- Laplacian smoothing
 - Per-vertex smoothing operation

$$\mathbf{x}_i = \frac{1}{2}(\mathbf{x}_{i-1} + \mathbf{x}_{i+1}), 2 \le i \le N - 1.$$

- Laplacian smoothing
 - Per-vertex smoothing operation

$$\mathbf{x}_i = \frac{1}{2}(\mathbf{x}_{i-1} + \mathbf{x}_{i+1}), 2 \le i \le N - 1.$$

- Laplacian smoothing
 - Per-vertex smoothing operation

$$\mathbf{x}_i = \frac{1}{2}(\mathbf{x}_{i-1} + \mathbf{x}_{i+1}), 2 \le i \le N - 1.$$

- Hardware platform
 - Desktop computer (Intel Core i7 CPU, 2GB memory)

Software environment

- Ubuntu Linux 14.04
- ROS Indigo
- Stage simulator
- Problem settings
 - Holonomic point robot
 - 200X200 occupancy grid maps

Comparative experiments

IEEE-ROBIO 2015, Zhuhai, China 1/18/2016

Comparative experiments

IEEE-ROBIO 2015, Zhuhai, China 1/18/2016

Performance statistics

- SARRT, a novel RRT variant
 - To bias the random tree growth based on a structure-aware costmap
 - Works well in practice
 - Avoids "dead ends" in the map
 - Shows better performance
 - Compatible with other improvements on RRT

Source code available at:

https://github.com/xuefengchang/micROS-SARRT-GlobalPlanner

- Limitations and future work
 - Computationally expensive to obtain the costmap
 - Use more advanced solvers
 - Exploiting multicore CPUs and/or GPUs
 - Try other structure-aware cost functions
 - Only 2D path planning problems with simple holonomic point robots
 - Apply SARRT on more complex problems

IEEE-ROBIO 2015

Thanks Questions?

SARRT: A Structure-Aware approach for 2D Path Planning

Xuefeng Chang Yanzhen Wang Xiaodong Yi Nong Xiao changxuefengcn@163.com, yanzhenwang@hotmail.com HPCL | School of Computer, National University of Defense Technology, China

Dec 7th, 2015