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Abstract— Motion/path planning remains one of the most im-
portant research topics in robotics for decades, since mobility is
a defining characteristics of robots. Sampling-based approaches
have proven to be effective for problems with complex con-
straints and high dimensionality. Specifically, Rapidly-exploring
Random Tree (RRT) is one of the most popular sampling-based
algorithms. However, it suffers from problems such as unstable
performance and suboptimal results.

This paper presents a novel RRT variant, namely, Structure-
Aware RRT (SARRT), which utilizes a physically-based
costmap to bias the tree growth to regions closer to the goal.
Instead of typical distance metrics, such as Euclidean and
Manhattan distances, the cost function is based on a simulated
diffusion process and is able to reflect the structure of the
free space and problem settings. Furthermore, a Laplacian
smoothing step is performed on the resulting path to improve
the smoothness of the path. Experimental results on 2D path
planning problems show the effectiveness of SARRT, in terms
of both algorithm runtime and resulting path quality.

I. INTRODUCTION

Mobility is one of the defining characteristics of robots.
Nevertheless, robots needs to move wisely according to some
specific criteria. Therefore, motion/path planning becomes a
very important topic in robotics and has received significant
research effort for decades. In the past decades approaches
based on Rapidly-expoloring Random Trees (RRT) [1] have
been among the most popular sampling-based planning ap-
proaches. RRTs explore the configuration space very effi-
ciently, since they implicitly exploit the Voronoi property
to direct the exploration to unexplored areas. RRT-based ap-
proaches work well in practice, and are able to find a feasible
solution to motion/path planning problems very quickly, even
with complex constraints and high dimensionality. They also
possess theoretical guarantees such as probabilistic complete-
ness. However, the performance of RRT-based approaches is
not stable due to their stochastic essense. Sometimes, results
obtained by RRT-based approaches are far from optimal,
since path cost is not considered in basic RRTs. Existing
solutions include biasing the tree growth according to differ-
ent criteria based on continuous costmaps. They are effective
in speeding up the planning process and making the resulting
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Fig. 1. A typical 2D path planning problem on the “Maze” map, with initial
configurations shown in green dots and goal configurations in triangles.
(a) The problem setting. (b) The color-coded structure-aware costmap. (c)
A random tree generated by the basic RRT approach. (d) A random tree
generated by SARRT.

paths possess some specific properties such as high obstacle
clearance. However, for moderately-constrained problems,
especially those with “dead ends” in the maps (with an
example shown in Fig. 1(a)), such solutions may exhibits
degraded performance, since the costmaps they utilize cannot
effectively reflect the structural information of the obstacles.

In this paper, we propose a Structure-Aware RRT-based
approach (SARRT) for path planning. It is inspired by the
research effort of biasing the RRT growth using costmaps.
The costmap used in SARRT is computed by solving a
diffusion equation and is actually a potential field that
approximates the distance to goal modulated by the pres-
ence of obstacles. Under the guide of the structure-aware
costmap, SARRT tends to grow the tree in a gradient descent
manner instead of the pure exploratory manner, as shown in
Fig. 1(d). Compared to basic RRT-based planners, SARRT
provides significant improvement in time efficiency and the
resulting paths are statistically of higher quality. Specifically,
contributions of this paper are listed as follows.

1) We propose a generic RRT-based planning framework
to get a costmap incorporated to bias the tree growth



according to some specific strategies.
2) We introduce a costmap defined over the configuration

space (shown in Fig. 1(b)), which is able to reflect
the structure of the free space, and demonstrate its
effectiveness in 2D path planning problems.

3) We propose to use Laplacian smoothing as a postpro-
cess step to locally optimize the resulting global path.

The remaining part of this paper is structured as follows.
Section II briefly describes the basic RRT approach, and
reviews some important RRT variants. Section III presents
the generic RRT-based planning framework, the structure-
aware costmap, as well as the local path optimization in the
SARRT approach. Section IV demonstrates the effectiveness
of SARRT in 2D path planning problems by experimental
results for typical problem configurations. Finally, Section V
concludes the paper and discusses about limitaitons of
SARRT and potential future work.

II. RELATED WORK

In this section, we first briefly describe the basic idea of
the original RRT approach, and then review typical RRT
variants proposed to improve the performance of basic RRT-
based planning approaches. Note that the aim here is not
to present a comprehensive survey of RRT-based planning
approaches, and only the research works most closely related
to SARRT are discussed.

A. Basic RRT

The basic RRT algorithm [1] grows a tree based on the
Voronoi property, biasing the search towards unexplored re-
gions of free configuration space. As shown in Algorithm 1,
the search process for global path is actually a process of
incremental construction of a single random tree rooted at
the initial configuration, with the nodes representing valid
configurations and edges representing feasible transitions.
The random tree is initialized with the initial configuration
xinit as the root and only node. In each iteration of RRT
algorithm, the planner draws a sample xrand from a uniform
distribution defined over the entire configuration space. A
new configuration xnew is generated by extending xnearest,
which is the nearest configuration to xrand in the current
tree, towards xrand by a predefined step size l. If xnew
is a valid configuration and the transition from xnearest to
xnew does not violate any constraints, such as obstacles and
specific dynamics, then both the node xnew and the edge
(xnearest, xnew) are added into the tree. This process iterates
until the distance between xnew and the goal configuration
xgoal is less than a predefined threshold, δ. A feasible
path from xinit to xgoal can be extracted by following the
corresponding edges edges in the random tree. A commonly
adopted trick for the basic RRT algorithm is to use xgoal
rather than xrand as the target towards which the tree is
grown in a certain portion of iterations.

Despite the simplicity, RRT-based planners work well in
practice, and can be easily applied to problems with complex
constraints. Compared with grid-based planning approaches,
RRT-based planners can handle high-dimensional planning

problems robustly and efficiently. For example, they are
widely applied in motion planning for robotic arms. How-
ever, one major weakness of the basic RRT-based planner is
that it does not take path cost into account. This can lead to
low-quality solutions that are far from optimal.

input : The initial point xinit, the goal point xgoal,
step size l

output: A new path P from the initial point to the
goal point

1 T .initialize(xinit);
2 while time remaining() do
3 xrand ← rand state();
4 xnearest ← nearest neighbor(T ,xrand);
5 xnew ← new state(xnearest,l);
6 if xnew then
7 T .add node(xnew);
8 T .add edge(xnew,xnearest);
9 if distance(xnew,xgoal)≤ δ then

10 P←get path(T ,xnew,xinit);
11 return P ;
12 end
13 end
14 end
15 return P ;

Algorithm 1: The basic RRT algorithm

B. RRT variants

In order to improve the performance of RRT-based plan-
ners in different application scenarios, many variants have
been proposed to modify the behavior of RRTs using differ-
ent strategies.

In order to improve the time efficiency, RRT-Connect uses
two trees rooted at the inital and goal configurations respec-
tively, each exploring space around them and also advancing
towards each other [2]. RRT-blossom introduces an implicit
flood-fill-like mechanism for escaping local minima in highly
constrained problems [3].

The underlying sample generation process also affects
the behavior of RRT-based planning approaches. Therefore,
some RRT variants use more elaborate sampling strategies
instead of the random uniform sampling in original RRT.
Dynamic-domain RRT adapts the sampling domain to the
problem and shows significant improvement over existing
RRT-based planners, with performance orders of magnitude
better on many problems [4]. RESAMPL adaptively chooses
different sampling strategies for RRT according to the local
properties of different regions [5]. Recently, Park et al.
proposed Poisson-RRT, which uses the maximal Poisson-disk
sampling scheme for tree expansion [6].

Another common extension is to bias the tree growth
in RRT-based planners, in order to speed up the explo-
ration or to obtain some desirable properties in the solution.
Heuristically-guided RRT (hRRT) provides a probabilistic



implementation of heuristic search concepts to obtain bet-
ter solutions with less cost in variable cost domains [7].
Transition-based RRT (T-RRT) combines exploration with
transition tests from stochastic optimization to compute low-
cost paths that follow valleys and saddle points of the
configuration-space costmap [8]. Recently, Medial Axis RRT
(MARRT) was proposed to bias tree exploration to the
medial axis of free space to improve obstacle clearance for
a safer path [9].

There are also other research efforts based on RRTs, which
aim at providing optimality guarantee [10][11], or exploiting
the flexiblity of RRT-based planner to solve problems with
complex constraints [12][13]. Moreover, Rapidly-exploring
Random Graphs (RRG) generalize the tree structure of RRT
to a graph to enable a greater exploration [14].

III. METHOD

A. Planner framework

A generic algorithm framework, as described in Algo-
rithm 2 and illustrated in Fig. 2, is proposed for RRT-
based planners with biased tree growth based on a costmap.
Specifically, a set of sample configurations Crand, intead of
only one sample in basic RRT, are drawn from a uniform
distribution over the configuration space in each iteration of
tree growth. By finding the corresponding nearest nodes in
the current tree to the configurations in Crand, another set
of configurations Cnearest can be formed. Consequently, a
new set of configurations, Cnew, for potential tree growth,
is generated by extending the nodes in Cnearest towards the
corresponding configurations in Crand by a fixed distance,
l.

Suppose that a cost function, φ(·), is defined over the
configuration space. The configuration in Cnew with the
lowest cost function value is chosen for potential extension
operation. One of the most commonly used cost functions is
inspired by A* search and consists of two terms:

φ(x) = G(xinit, x) +H(xgoal, x) (1)

where G(xinit, x) is the past path cost, which can be easily
obtained by using information about node depth and the
predefined extension distance, l. H(xgoal, x) is a heuristics
for the future path cost, and popular choices include Eu-
clidean distance and Manhattan distance between the current
configuration and the goal. Note that the cost function φ(·)
in the algorithm framework is very generic and could have
a variety of different implementations.

For the purpose of avoiding exploring the areas which
have already been visited by the random tree, a regression
avoidance mechanism is also integrated in the generic plan-
ner framework. Whenever adding the configuration with the
lowest cost in Cnew into the current tree is identified as a
regression, the corresponding tree growth operation will be
aborted and the planner will directly start the next iteration.
A typical indicator for regression is defined as follows [3].

|xnew − xnearest| < min
xn 6=xnearest

{|xnew − xn|} (2)

where xnew is the node with the lowest cost in Cnew,
xnearest is the closest node to xnew in the current tree, and
xn represents any node in the current tree. Note that there
can also be other choices for the indicator of regression.

input : The initial point xinit, the goal point xgoal,
array size s, step size l

output: A new path P from the initial point to the
goal point

1 T .initialize(xinit);
2 while time remaining() do
3 for i← 1 to s do
4 xrands[i]← rand state();
5 xnearests[i]← nearest neighbor(T ,xrands[i]);
6 xnews[i]← new state(xnearests[i],l);
7 end
8 xnew, xnearest←lowest cost(xnews[1..s]);
9 if regression(T ,xnew,xnearest) then

10 T .add node(xnew);
11 T .add edge(xnew,xnearest);
12 if distance(xnew,xgoal)≤ δ then
13 P←get path(T ,xnew,xinit);
14 return P ;
15 end
16 end
17 end
18 return P ;
Algorithm 2: The generic framework for biased
RRT-based planners.

B. Structure-aware cost function
As mentioned in Section III-A, there are various choices

for the cost function used in the generic RRT-based planning
framework to bias the RRT growth. Such choices include
Euclidean distance and Manhattan distance, which work
well for sparse and loosely constrained configuration spaces.
However, for moderately to highly constrained configuration
spaces, such as the “Rooms” and “Maze” maps shown in
this paper, such simple cost functions are not able to reflect
the structure of the free space, as shown in Figure 3(a).

SARRT uses a different cost function which mimics a
diffusion process over the free space in the planning problem.
Specifically, we set initial cost values at the initial and
goal configurations to be dmax and −dmax, where dmax is
positive. Then, we solve the diffusion equation (Equation 3)
for the free space using an iterative algorithm.

∂φ(r, t)

∂t
= D∇2φ(r, t) (3)

where D is the diffusion coefficient, and φ(r, t) represents
the cost function defined on every positions r at time step t.
Practically, we downsample the original map to decrease the
computational cost. Since the result of the diffusion process
is only used as a rough guide for the tree growth, we found
that even a relatively large downsample ratio can obtain
results good enough to bias the following RRT growth.



Fig. 2. Extension process of the generic framework. (a) At one iteration,
a set of random points (in light blue) are generated. (b) The corresponding
nearest nodes in the current RRT are found. (c) New points (in orange)
which are considered for potential expansion are generated, with the invalid
new point shown in purple and the one with lowest cost value circled. (d)
The RRT after extension.

Fig. 3. (a) Cost function based on Euclidean distance vs. (b) structure-
aware cost function on the “Rooms” map. The initial and goal configurations
are depicted using a circle and a triangle respectively in each sub-figure.

As shown in Figure 1(b) and Figure 3(b), the resulting
costmaps are aware of the structure of the free space in
the planning problem and the cost function value at every
feasible configuration roughly reflects its distance to the goal.
To further filter out tree extension operations which cause
regression according to the above-mentioned costmap, we
introduce an additional regression indicator besides the one
presented in Equation 2.

φ(xnew) > φ(xnearest) (4)

In all experiments, we downsample the 200 × 200 maps
into a resolution of 40×40. When solving Equation 3 in our
experiments, 4000 iterations are used to obtain satisfactory
results. To make use of the quadcore CPU, we use OpenMP
to parallelize the costmap computation, and the resulting
average runtimes is 57ms.

C. Local path optimization

Typical sampling-based planners are aimed at finding a
feasible solution, instead of guaranteeing the quality of the
solution. As shown in Figure 4(a), most of the paths obtained

Fig. 4. Local path optimization using Laplacian smoothing. (a) The path
returned by the RRT-based planner. (b) Per-vertex smoothing operation
moves the circled red vertex to a new position depicted by the purple
dot. (c) If the per-vertex smoothing operation would violate some planning
constraints, such as obstacles, the operation will be aborted. (d) The path
after optimization (shown in green) vs. the original path (shown in light
purple).

by RRT-based planners are of a zigzag shape. Therefore,
local path optimization is sometimes performed to improve
the quality of the resulting path, in terms of path length,
obstacle clearance, etc. [15]. Similarly, we propose to use
Laplacian smoothing [16] as a postprocessing step to increase
the smoothness of the global paths.

The proposed path optimization approach is shown in
Figure 4. Given an original global path represented by a
series of vertices, P = {xi}(1 ≤ i ≤ N), a new position
is chosen for each vertex based on local information and
the vertex is moved there, whenever the new configuration
satisfies all planning constraints. Specifically, the per-vertex
smoothing operation can be described by Equation 5.

xi =
1

2
(xi−1 + xi+1), 2 ≤ i ≤ N − 1. (5)

In other application fields such as geometry processing,
Laplacian smoothing is typically performed in a iterative
manner to obtain a satisfactory result. However, in all
our experiments, only one pass of Laplacian smoothing is
performed from the initial position to the goal position
and the smoothness of the global path is already improved
significantly, as shown in Figure 5. It should also be noted
that in all the resulting paths presented in Section IV are
generated without Laplacian smoothing, since we consider
the local path optimization to be a stand-alone postprocessing
step.

IV. EXPERIMENTAL RESULTS

Experiments of 2D path planning problems with different
maps are conducted to demonstrate the efficiency and effec-
tiveness of SARRT. This section shows experimental results
on two different maps, namely the “Maze” and the “Rooms”,
both given in the format of binary bitmap images with an
identical pixel resolution of 200 × 200. During all experi-
ments, we use a fixed tree growth step of 6 occupancy map



Fig. 5. Comparison of global paths before (shown in blue) and after (shown
in red) local path optimization for two different maps.

cell lengths. Because of the stochastic essence of sampling-
based approaches, fifty runs of path planning were performed
using original RRT with regression avoidance (RRT1), RRT
with Euclidean distance as the heuristic cost (RRT2), and
SARRT respectively to collect the statistics for performance
comparison. Currently, we only consider a holonomic point
agent in all experiments for the sake of simplicity.

We have implemented SARRT in ROS [17] (version
Indigo Igloo) and all the above-mentioned experiments are
conducted using the Stage simulator [18]. The hardware
platform is a mainstream desktop with a quadcore Intel Core
i7 CPU and 2GB main memory. Note that except for the
computation of the structure-aware cost function, only one
CPU core is used throughout the experiments shown in the
paper.

Figure 6 visualizes the performance statistics for the three
different planners on the two maps. It clearly shows that
SARRT outperforms the other two planners in algorithm
runtime, resulting path optimality, and RRT node counts. The
significant gain in time efficiency is due to ... Besides, the ad-
ditional cost-based regression avoidance mechanism further
eliminates unnecessary tree expansions. As a consequence,
SARRT produces significantly less tree nodes than the other
two planners. Besides the time efficiency gain, less tree nodes
also generate a smaller memory footprint.

Figure 7 and 8 provide visualization of experimental
results incluing examples of random trees generated and
all resulting paths obtained by different RRT-based planners
on the “Maze” and “Rooms” maps, respectively. Compared
with RRT1 and RRT2, SARRT planner seldom expands into
regions which lead to “dead ends” according to the problem
configuration, due to the relatively high cost therein. As
highlighted by the circled regions in Figure 7 and 8, paths
generated by SARRT tend to directly follow the gradient
of the structure-aware costmap, and thus statistically have
higher quality than paths obtained with RRT1 and RRT2.

V. CONCLUSIONS

In this paper, we propose a novel RRT variant, namely
SARRT, to bias the random tree growth based on a structure-
aware costmap defined over the configuration space of a

Fig. 6. Performance statistics of algorithm runtimes in milliseconds (a),
path lengths in meters (b), and RRT node counts (c). Samples per boxplot:
50.

Fig. 7. Comparison of results returned by different RRT-based planners
on the “Maze” map, with dashed blue circles highlighting the difference.
Upper: examples of random trees generated; Lower: resulting global paths.

Fig. 8. Comparison of results returned by different RRT-based planners
on the “Rooms” map, with dashed blue circles highlighting the difference.
Upper: examples of random trees generated; Lower: resulting global paths.



planning problem. Through comparative experiments of typ-
ical path planning problems on 2D maps, we demonstrate
that SARRT works well in practice, avoids map regions
leading to “dead ends”, and shows better performance in
algorithm runtime and resulting path quality than the basic
RRT planner and RRT planner with Euclidean distance as the
heuristic cost. Moreover, various techniques used by other
RRT variants, such as more advanced sampling strategies
and parallelization, can also be easily integrated to work
together with SARRT, since the framework we proposed is
quite generic and the adoption of the structure-aware costmap
is orthogonal to other improvement techniques.

One limitation of SARRT is the computationally expensive
step of obtaining the structure-aware costmap by solving
the diffusion equation. It makes the majority of algorithm
runtime in our experiments, and will probably render the
entire SARRT planner less efficient for simpler problems.
However, we believe that the performance of SARRT can be
largely improved by further exploiting the parallel computing
power of multi-core CPUs or GPUs or using more advanced
PDE solvers. Currently, we have only tested SARRT for
2D path planning problems of a holonomic point agent.
Future effort will be devoted to applying SARRT in more
complex problems, such as path planning for kinodynamic
systems and motion planning in higher dimension. This paper
demonstrates the performance gain of considering structural
information in planning problems, and provides a generic
sampling-based framework with a first attempt of using
result of a simulated diffusion process as the structure-aware
costmap. In the future, we will investigate other indicators
or cost functions [19] which are more efficient and able to
reflect the structural information better.
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