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Abstract— In this paper, we present a solution to visual
simultaneous localization and mapping (SLAM) using multiple
RGB-D cameras. In the SLAM system, we integrate visual and
depth measurements from those RGB-D cameras to achieve
more robust pose tracking and more detailed environmental
mapping in unknown environments. We present the mathemat-
ical analysis of the iterative optimizations for pose tracking
and map refinement of a RGB-D SLAM system in multi-
camera cases. The resulted SLAM system allows configurations
of multiple RGB-D cameras with non-overlapping fields of
view (FOVs). Furthermore, we provide a SLAM-based semi-
automatic method for extrinsic calibration among such cam-
eras. Finally, the experiments in complex indoor scenarios
demonstrate the efficiency of the proposed visual SLAM al-
gorithm.

I. Introduction

In order to achieve more robust pose tracking of visual
SLAM, previous work has made much effort in fusing
information from multi-modal sensors, e.g. fusing inertial
measurements [20], [26], [31], [11]. Recently, the robotics
community has shown a growing interest in improving the
performance of visual SLAM by utilising multiple cameras
[16], [32], [9]. The reason for the above two trends is
that pose tracking of a monocular visual SLAM system
may easily fail in complex environments due to poor vi-
sual features which can be observed by one camera. This
also applies to stereo visual SLAM and RGB-D SLAM,
which employ cameras looking in one specific direction
with limited FOVs. Actually, a larger effective FOV can
be obtained by integrating multiple cameras looking into
different directions, so that more reliable visual features can
be observed to fulfil the pose tracking and map updating
tasks. This implies that better pose tracking robustness can
be achieved by extending monocular visual SLAM to utilise
measurements from multiple cameras.

In this work, we propose using multiple RGB-D cameras
for visual SLAM. We integrate depth measurements in
multi-camera visual SLAM, and thus, we can benefit from
both a multi-camera configuration and depth measurements
provided by RGB-D cameras. Comparing with conventional
cameras, RGB-D cameras, e.g. the Kinect from Microsoft,
can provide direct depth measurements correspond to visual
features. These measurements can be used for avoiding scale
drift of a visual SLAM system [25] and for 3D occupancy
grid mapping [4]. Meanwhile, we do not require each visual
feature to have a depth measurement from a RGB-D camera.
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Fig. 1: Visual SLAM using two Kinects mounted on a mobile
robot in a complex indoor environment with poor-textured
glass walls and floor. Top left: The two Kinects mounted on
a Turtlebot, one facing forward, and the other one facing the
right side. Top middle and top right: A front camera view
and a right-side camera view at the same time-stamp during
an indoor navigation. Bottom: The built dense point cloud
using the two Kinects in a SLAM process. The trajectory
and keyframe poses are also plotted in this map.

Depth measurements are treated as additional constraints in
the SLAM system, which is of great advantages when using
those low-cost RGB-D cameras, since depth information is
very likely to be unavailable for some regions of an image.
Moreover, in this way, time costs introduced by integrating
depth measurements can be nearly negligible.

To the best of our knowledge, no published work has
utilised multiple RGB-D cameras with non-overlapping
FOVs in a single SLAM system. Our method allows flexible
configuration of RGB-D cameras on a robot, in order to
obtain various useful perspectives without requiring overlaps
in their FOVs, or requiring the cameras to be mounted in
a specific way in order to keep a single-viewpoint model
as some omnidirectional cameras. We integrate both visual
and depth measurements from multiple RGB-D cameras, and
present the mathematical analysis on how those measure-
ments should be fused in the optimisations of visual SLAM,
which is not a trivial issue since multiple cameras no longer
preserve a single-viewpoint model.



II. RelatedWork

Early work related to pose estimation using multi-camera
systems can be found in the context of structure from motion
(SFM). The work in [21] presents a theoretical treatment
of multi-camera systems in SFM deriving the generalized
epipolar constraint. In [6], a virtual camera is proposed as a
representation of a multi-camera system for pose estimation.
A structure-from-motion scheme is achieved using multiple
cameras in this work. A number of more recent work on
multi-camera systems for pose estimation of mobile robots
can be found in the literature. In [23], pose estimation of a
mobile robot is solved by using two pairs of stereo cameras
combined with the Extended Kalman Filter. The work in
[16] adopts a generalized camera model for a multi-camera
system, to estimate the ego-motion of a self-driving car
using a 2-Point RANSAC scheme. In a further work in [18],
this problem is solved with a minimal set of three-point
correspondences.

Recently, multi-camera systems have been found in visual
SLAM. The work in [13] presents a solution to visual SLAM
with a multi-camera rig using Harris corner detector [7].
Further in [14], a Bayesian approach to data association is
presented taking into account moving features which can be
observed by cameras under robot motion. The work in [27]
provides solutions to two different problems in multi-camera
visual SLAM: automatic self-calibration of a stereo rig while
performing SLAM and cooperative monocular SLAM.

Multi-camera visual SLAM is further implemented for
autonomous navigation of micro aerial vehicles (MAVs).
Our previous work in [32] utilises two cameras with non-
overlapping FOV in visual SLAM for autonomous navigation
of a MAV in complex environments based on the Parallel
Tracking and Mapping (PTAM) system [15]. It proved that
more robust pose tracking can be achieved by a multi-camera
configuration in SLAM. In [29], multi-camera visual SLAM
is achieved based on another modified version of PTAM.
This SLAM system allows convergence in pose tracking and
mapping with the absence of accurate metric scale, taking
advantages of the Taylor omnidirectional camera model
and a spherical coordinate update method. For autonomous
navigation of MAVs in large scale environments, the work
in [33] modifies the work in [32] to operate as a robust
visual odometry, and implements an efficient back-end for
loop closing. In [9], two stereo pairs are used to estimate
the pose of an MAV based on a generalized camera model.
Inertial information is used to recover the relative motion
of the MAV with metric scale. Real-time loop closing runs
on-board of MAVs is achieved in both [33] and [9]. In the
work in [17], multiple cameras are also introduced to loop
closing. In this work, the relative pose between two loop-
closing pose-graph vertices is obtained from the epipolar
geometry of a multi-camera system, without requiring the
reconstruction of 3D scene points.

Although to the author’s knowledge no published work
has demonstrated SLAM using multiple RGB-D cameras,
much work on SLAM using a single RGB-D camera can

be found in the literature. In [10], the depth measurements
of matched features between consecutive RGB images are
used to determine their 3D positions, which serve as an
initialisation to the more accurate Iterative Closest Point
(ICP) algorithm. The SLAM system in [28] uses a two-
level approach for efficient optimisation of the map. It also
works with RGB-D cameras. The work in [25] utilises depth
information in the PTAM system to solve the scale ambiguity
and scale drift problems in monocular visual SLAM. The
SLAM system in [5] utilises two planar mirrors to split the
FOV of a RGB-D camera to cover both front and rear view
of a mobile robot. The work in [30] perform RGB-D visual
odometry on an MAV to enable its autonomous flight. 3D
occupancy grid map is then built for path planning.

In order to use multiple cameras for pose estimation,
extrinsic calibration among those cameras needs to be per-
formed. Our interest on this aspect is mainly on automatic
calibration of cameras with non-overlapping FOVs. The work
in [3] proposes a SLAM-based automatic calibration scheme
for multiple cameras. It uses global bundle adjustment to
optimize the alignment of maps built by different visual
SLAM instances, each of which corresponds to one camera.
The proposed solution computes the relative 3D poses among
cameras up to scale. In a more recent work in [8], automatic
extrinsic calibration is achieved based on a previously built
accurate map of the environment. The synchronised cameras
to be calibrated moves in the mapped environment, so that
a set of pose estimates of them can be obtained by 2D-
3D correspondences, which are then utilised in a non-linear
optimisation process to estimate the relative camera poses
after an initial guess is found.

III. SLAM withMultiple RGB-D Cameras

A. The camera projection model and pose update

Using the same calibrated camera model as in [15], the
image projection of the map point p j to the camera Ci is

u ji = PCi

(
Eciwp j

)
, (1)

where PCi is the projection function of the camera Ci
considering lens distortion, p j are the world coordinates
of the map point p j, and Eciw is a member of the Lie
group SE(3), which represents the camera pose in the world
coordinate system, containing a rotation and a translation
component.

In a multi-camera system, we compute the pose update
of one specific camera C1, based on measurements from all
cameras, as illustrated in Fig. 2a. The pose of other cameras
can be updated by assuming constant transformations relative
to C1, i.e. pose updates of all cameras can be expressed with
one single six-element vector µ using the exponential map:

E′ciw = Ei1 · eµ ·Ec1w, (2)

where µ is an element of the Lie algebra se(3), and Ei1 is
the pose of C1 in the camera coordinate system of Ci. The
pose tracking (and a part of mapping) problem of the SLAM
system now mainly consists of how to obtain an optimized
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Fig. 2: (a) A 2D illustration of the camera pose updates in
a dual-camera case and (b) four keyframes obtained by the
dual cameras at two points in time. For camera-pose update,
image measurements from all cameras are used to find the
pose update of camera C1. For bundle adjustment, image
measurements in all keyframes are used to find the pose
updates of keyframes K1 (K11, K12) and position updates of
all measured measured map points.

µ as a pose update for camera C1 by minimizing a certain
objective function. The advantage of the parametrization of
the camera pose updates using the six-element vector µ is
that it allows a closed-form differentiation of Eq. 2.

B. The map

The map of the SLAM system consists of a set of
keyframes K obtained by all the cameras in the vision system
at various time-stamps and a set of 3D map points P mea-
sured by these cameras. A map point p j may be located and
added to the map by stereo triangulation of matched FAST
corners [24] in successive keyframes from a certain camera,
or by using direct depth measurement of the corresponding
image feature. Each keyframe saves its absolute pose and
all the observations to the map points. We allow possible
observation of each map point by different cameras. Fig. 2b
illustrates a map segment with four keyframes in a dual
camera case.

C. Overview of the SLAM system

The implementation of our SLAM system is based on
the PTAM framework. It mainly consists of two separate
threads, in which images from multiple cameras are utilised:
In the first thread responsible for camera pose tracking, fixed-
range searches are applied to FAST features correspond to
potentially observable map points in images from multiple
cameras. The resulted 2D-3D correspondences are then used
for camera-pose tracking. The second thread integrates new
keyframes from multiple cameras to the map and creates
new map points. Furthermore, local bundle adjustment is
performed to refine the map.

D. Optimizations in SLAM

In our visual SLAM system, the camera pose tracking
and map refinement (using bundle adjustment) are done by

iteratively minimizing a robust objective function of the
reprojection errors of sets of image measurements S i, which
are observed map points in each camera (or keyframe) i.

In an n-camera (or n-keyframe) system, we need to mini-
mize the function

n∑
i=1

∑
j∈S i

Obj
(
| e ji |

σ ji
,σT

)
, (3)

where Obj is the Tukey biweight objective function [12],
| e ji | is the reprojection error of point j measured in camera
(or keyframe) i, σ ji is the estimated measurement noise of
point j, and σT is a median-based robust standard-deviation
estimate of the distribution of all reprojection errors. e ji is
defined as the difference between the image reprojection of
map point j and its actual image measurement:

e ji = u ji− û ji. (4)

When RGB-D cameras are used, we utilise depth mea-
surements Di to the corresponding image observations in S i
for bundle adjustment similarly as in [25]. However, since
measurement errors in depth and image pixels cannot be
modeled in the same unit, we model the function to be
minimised in a unified form as

F (C,S,D) =

n∑
i=1

∑
j∈S i

Obj
(
| e ji |

σ ji
,σT

)
+

n∑
i=1

∑
j∈Di

Obj

 | ed
ji |

σd
ji

,σD

 ,
(5)

where C includes the n cameras (in pose tracking) or the n
keyframes (in bundle adjustment), S and D are the sets of S i
and Di, respectively. ed

ji is the depth measurement error of d ji,
which will be analysed in Sect. III-E. This function does not
require each observation in S i to have a depth measurement.

For the pose tracking of an n-camera system, the opti-
mization problem is to find the optimal pose update µ for
camera C1 using image measurements by all the cameras at
the current time-stamp t:

µ′ = argmin
µ

F (Ct,St) . (6)

Then the pose of all cameras can be derived by Eq. 2.
Local bundle adjustment is used to refine the recent

keyframe poses and related map point positions in [15]. In
our work, image measurements from all cameras are utilised
to compute the optimal pose updates of the keyframe set
K1 which are obtained by the first camera C1. The poses of
other rigidly connected keyframes Kc are computed based
on the updated poses of their associated keyframes in K1, as
illustrated in Fig. 2b.The positions of map points Pa which
are measured in Ka or Kc are also updated in the bundle
adjustment. Thus, the local bundle adjustment in our SLAM
system means solving the following minimization problem:

{{µi∈K1 }, {p j∈Pa }} = argmin
{{µ},{p}}

F (Cl,Sl,Dl) . (7)

Here, Cl = Ka∪Kc∪K f . K f is the further fixed keyframe set
containing keyframes in which a measurement of any point
in pa has been made. Sl is the image measurements for Pa.



Dl includes all the depth measurements that can be obtained
for Pa.

E. The Jacobians
The above minimization problems can be solved by it-

erations of reweighted nonlinear least squares. One funda-
mental requirement to do this efficiently is to differentiate
measurement errors, i.e. to obtain the Jacobians of them,
with respect to those parameters that need to be estimated.
In pose tracking, the derivatives of e ji with respect to the
estimated camera pose update µ need to be computed. In
bundle adjustment, the derivatives of e ji and ed

ji with respect
to µ and the map point position p j are also required. In [32],
we provided the derivatives of e ji for multiple conventional
cameras. In this section, we extend the work to analysis depth
measurement errors from RGB-D cameras.

For a map point j measured by the camera C1, we can
compute the Jacobian matrix of e ji with respect to the
estimated C1 pose update µ at µ = 0 using the chain rule
as

J1µ =
∂PC1

(
eµEc1wp j

)
∂µ

=
∂PC1 (c)
∂c

∣∣∣∣∣∣c=Ec1wp j

·
∂
(
eµEc1wp j

)
∂µ

.

(8)
The first term of the above matrix product is the Jacobian of
the camera projection function in Eq. 1, and the last term is:

∂
(
eµEc1wp j

)
∂µ

=
(
I3 − [Ec1wp j]×

)
. (9)

However, for map points measured by other cameras, with
Eq. 2, the differentiation becomes:

Jiµ =
∂PCi

(
Ei1eµEc1wp j

)
∂µ

=
∂PCi (c)
∂c

∣∣∣∣∣∣c=Eciwp j

·
∂
(
Ei1eµEc1wp j

)
∂µ

.

(10)
Its difference to Eq. 8 lies in the last term of this equation:

∂
(
Ei1eµEc1wp j

)
∂µ

= Rot (Ei1) ·
(
I3 − [Ec1wp j]×

)
, (11)

where Rot (Ei1) represents the rotation component of Ei1. The
Jacobians are taken at the vicinity of the present estimates
of the camera poses or point positions.

The Jacobian of e ji with respect to the estimated point j
pose can be expressed in a consistent way, regardless of the
camera used to measure this point:

Jp j =
∂PCi

(
Eciwp j

)
∂p j

=
∂PCi (c)
∂c

∣∣∣∣∣∣c=Eciwp j

·
∂
(
Eciwp j

)
∂p j

. (12)

The last term is:

∂
(
Eciwp j

)
∂p j

= Rot
(
Eciw

)
. (13)

When the depth measurement to a map point is avail-
able, we can derive its error by beginning with the 3D-
measurement error in the camera coordinate system:

e′ji = p ji− p̂ ji, (14)

so that the camera projection model in Eq. 1 can be ignored.
Now, the resulted Jacobians of e′ji in Eq. 8, 10, and 12 only
remain their last terms. Since ed

ji in Eq. 5 is simply the z-
axis value in e′ji, the Jacobians of ed

ji are equivalent to the
last row of Eq. 9, 11, and 13, respectively.

IV. Relocalization

A relocalization module is commonly required in SLAM
systems due to possible tracking failures. In our multi-camera
system, current images from all those cameras can be used
for this purpose. If pose tracking fails, we use EPnP [19] in a
standard RANSAC scheme to locate the current image frame
to its most recent keyframe Kr obtained by the same camera.
This process iterates through all cameras until a proper
hypothesis is achieved. BRIEF descriptors [2] of all extracted
FAST features after maximal suppression are used to match
the two frames to obtain a set of 2D-3D correspondences.

V. Experiments and Results

A. Experiment setup

In the experiment, a Turtlebot platform with two Kinect
sensors as shown in Fig. 1 is used for logging RGB-D
images. The main reason for the choice of the count of
Kinects is that the computer on our Turtlebot has only two
USB 2.0 buses, which allows at most two pairs of RGB-
D images to be transported in parallel. Measurement error
distributions of the Kinect sensor as calibrated in [25] is
applied to the SLAM system. Our SLAM system runs on a
laptop equipped with an Intel i3 core 2.4 GHz CPU and a 6
GB RAM. The SLAM system is implemented in the Robot
Operating System (ROS) [22] in Ubuntu.

B. Semi-automatic camera extrinsic calibration

Since the different RGB-D cameras in our vision system
can be mounted without overlapping in their FOVs, standard
extrinsic calibration methods for stereo cameras cannot be
applied. In [32], an external pose tracking system is used to
facilitate the calibration. In this paper, we propose a semi-
automatic calibration method based on visual SLAM without
requiring expensive external facilities.

As shown in Fig. 3a, we fix a planar pattern Pi, which
is used for monocular-camera calibrations using the Matlab-
toolbox proposed in [1], in front of each camera Ci to be
calibrated. Pi defines its own coordinate frames Wi. After
Ci takes an image of Pi, the accurate pose T p

i of Ci in Wi
can be obtained by performing extrinsic calibration using
the Matlab toolbox. Then we perform the SLAM system
proposed in this paper with a single Kinect Cs around those
planar patterns, its pose will be accurately tracked in SLAM.
Thus, when we do the same calibration process for Cs as to
Ci in the above, the absolute pose T w

pi of each pattern Pi
in the SLAM coordinate frames W can be obtained by a
coordinate transformation. Therefore, the absolute pose of
camera Ci in W is

T w
i = T w

pi ·T
p
i . (15)
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Fig. 3: Semi-automatic extrinsic calibration among multiple RGB-D cameras. (a) Experimental setup of Kinects and planar
patterns. (b) A planar pattern viewed by one Kinect. The extrinsic calibration results using the Matlab toolbox are also
attached in. (c) The map built by the single-Kinect SLAM system, and the keyframe poses marked as RGB-axes.

Finally, the relative pose of camera C1 to another camera C j
can be derived as T1 j = T w

1
T ·T w

j .
An exemplary image of a planar pattern taken by a Kinect

is shown in Fig. 3b, in which the extrinsic calibration results
using the Matlab toolbox are also attached. The map built by
the SLAM system during the calibration process is shown
in Fig. 3c, in which the keyframe poses are illustrated as
RGB-axes. A drawback of our method compared to a fully
automatic method, e.g. the method in [8], is that our method
relies on pose estimates obtained in a single time point as
mentioned above. As a result, the calibration performance
may be affected by measurement noises, especially the pose
tracking errors in SLAM. In order to reduce such errors,
environments with rich visual features are highly recom-
mended for the SLAM process, e.g. the environment shown
in Fig. 3b. An alternative way to obtaining T p

i manually
is to use augmented reality tags to estimate camera poses
automatically. However, we chose the current way for its
accuracy and convenience.

C. Localisation and mapping results

We manually drive our Turtlebot in our office in HPCL,
and take a video logfile of RGB-D images from the two
Kinects as a ROS bag. As can be found in Fig. 1, very
rare reliable visual feature can be found on the ground and
glass walls. Reflections of glass walls around the office even
introduce more noises to visual SLAM systems. To evaluate
the localisation and mapping results, we replay the logfile
offline to serve as image input to our SLAM system. The
performance of the SLAM system using dual Kinects is
compared to that using a single Kinect. Since the Kinect
mounted towards the side of the robot can often obtain too
few reliable features for pose tracking by its own in this
scenario, we do not consider it in the single-Kinect SLAM
system.

The trajectory of the Turtlebot during this navigation is
shown in Fig. 4a, in which pose estimates by SLAM with
the dual Kinects (DK) are plotted in red, and results with a
single forward-looking Kinect (SK) in green. A segment of
the trajectory marked in black rectangle in Fig. 4a is enlarged
and shown in Fig. 4b.

Before comparing to ground truth data, we can evaluate the
performance of the SLAM system in the following qualitative
way: Since we control our robot in a smooth way when we
take logfiles, we can find that the trajectory estimated with
the dual Kinect is more close to the actual movement of
the robot, while the pose estimates plotted in green show
obvious vibrations. Such vibrations normally happen when
no enough good visual features can be tracked for pose
estimation. When using multiple cameras, less chances of
such situations may happen to the SLAM system.

Time costs of the pose tracking thread in the two camera
configurations are shown in Fig. 4c. One major factor affect-
ing the time cost of the pose tracking thread is the count
of FAST features detected in the images. Moreover, since
we are not using a real-time Operating System, vibrations in
time cost will happen even for processes with very similar
computation complexities. Furthermore, as the size of the
map grows, time cost of the pose tracking thread will slightly
grow, since all map points will be tried to re-project to the
current image frames, to check whether they are potentially
visible.

Fig. 5 shows the map and the point cloud built by our
SLAM system using dual Kinects from two viewing angles.
The trajectory and keyframes during this navigation are
also plotted in those figures. The SLAM system with two
Kinects produces an accurate environment dense point-cloud
as shown in Fig. 5a. This dense point cloud provides more
detailed information of the environment than a single Kinect
could achieve. The sparse map points produced by the color
cameras of the two Kinects are shown in different colors in
Fig 5b: The points in blue are obtained by the camera facing
forward of the robot, and the points in red by the camera
facing right side. Our SLAM method allows those points
to be measured by both cameras in both pose tracking and
bundle adjustment processes.

D. Comparisons with ground truth data

In this experiment, accurate pose estimates from a 2D
laser-based SLAM system are used as ground truth data for
further evaluations. Our Turtlebot is driven in a similar way
as in the last experiment, in the same room covering slightly
larger area.
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Fig. 4: The trajectory of the Turtlebot and time costs of our SLAM system in the experiment. (a) The full trajectory during
the navigation. (b) The trajectory segment corresponds to the part of trajectory marked in black rectangle in (a). (c)Time
costs of the pose tracking thread using the two different camera configurations.
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Fig. 5: The point cloud (a) and sparse map (b) built by our visual SLAM system using two Kinects, viewing from a top
perspective. Another perspective of the point cloud is shown in Fig. 1.

Fig. 6 shows the trajectories of the Turtlebot estimated
with different sensor setups during a same run of the robot.
Position estimates from our SLAM system using both dual
Kinects and a single forward-looking Kinect fit well to the
ground truth data provided by the laser-based SLAM system
(laser). The root-mean-square errors (RMSEs) of estimates
from the dual-Kinect RGB-D SLAM system during the
whole run are (4.5,4.2) centimeters in the x− y directions,
while RMSEs of that from the single-Kinect RGB-D SLAM
system are (16.8,9.7) centimeters. Using the dual-Kinect
SLAM method provides better pose tracking performance in
this run. Again, this can be explained by that more reliable
visual features can be obtained using the dual Kinects. Lack-
ing of reliable visual features in the single-Kinect system
could introduce larger pose drifts, which will be accumulated
during the whole operation.

VI. Conclusions and Discussions
In this paper, we propose using multiple RGB-D cam-

eras in visual SLAM for better pose tracking performance
and more detailed environment mapping. The mathemati-
cal analysis in this paper explains how visual and depth
measurements from those cameras could be fused into one
single SLAM system by solving certain optimisation prob-
lems. In the experiments, we finally use two Kinects in
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Fig. 6: The trajectories of the Turtlebot measured by our
SLAM system using dual Kinects (DK), single forward-
looking Kinect, and by a laser-based SLAM system (laser).
(a) Trajectories on the x − y plane, (b) pose estimates on
the x−axis and (c) on the y−axis. The SLAM process
using the dual Kinects during this run is illustrated in the
accompanying video.

SLAM, due to limitations of the available hardware. The
experiments with image logfiles taken from a ground vehicle
has demonstrated the theory presented in this work. Another
contribution of this paper is that we make the source code
related to this work publicly available as a ROS package



online at https://github.com/ShaowuYang/idSLAM. A
video demonstration of this work can be found in the accom-
panying video, or at https://youtu.be/yDwH5TNlsRQ and
http://v.youku.com/v_show/id_XMTI5NzA2MjYyOA.

Recent work would be implementing an efficient back-
end for loop closing, in which images from multiple cam-
eras should be considered. Furthermore, since synchronising
multiple Kinect sensors is not practical, to utilise them for
more accurate SLAM, future work could be compensating
feature measurements among different cameras in the image
space based on a tracked camera motion model. Further work
related to camera extrinsic calibration could be done in a
fully automatic way similarly to the work in [8] and provide
an open-source toolbox which can be easily handled.
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