
Removing Dynamic 3D Objects from Point Clouds of a Moving RGB-D Camera

Canben Yin†, Shaowu Yang†, Xiaodong Yi†∗, Zhiyuan Wang†, Yanzhen Wang†, Bo Zhang†, Yuhua Tang†
†State Key Laboratory of High Performance Computing, School of Computer

National University of Defense Technology
Changsha, P. R. China, 410073

corraddr: yixiaodong@nudt.edu.cn

Abstract—Most state-of-the-art visual simultaneous local-
ization and mapping (SLAM) systems are designed for ap-
plications in static environments. However, during a SLAM
process, dynamic objects in the field-of-view of the camera
will affect the accuracy of visual odometry and loop-closure
detection. In this paper, we present a solution to removing
dynamic objects from RGB images and their corresponding
depth images when a RGB-D camera is mounted on a mobile
robot for visual SLAM. We transform two selected successive
images to the same image coordinate frame through feature
matching. Then we detect candidate image pixels of dynamic
objects by applying a threshold to the image difference between
the two images. Furthermore, we utilize depth information of
the candidate pixels to decide whether true dynamic objects
are found. Finally, in order to extract a complete 3-dimensional
(3D) dynamic object, we find the correspondence between
the object and a cluster of the point cloud computed from
RGB-D images. To evaluate the performance of detecting and
removing dynamic objects, we do experiments in various indoor
scenarios, which demonstrate the efficiency of the proposed
algorithm.

Keywords-Removing dynamic 3D objects, Image difference,
RGB-D camera, Point cloud, Mobile robot, Visual SLAM

I. Introduction

How to achieve accurate localization and environment
mapping is considered to be an essential problem for
autonomous navigation of many mobile robots. SLAM is
proposed to focus on solving this problem. The majority
of robotics researchers fuse multiple sensors to improve
the accuracy of the localization and mapping. However, the
proposed systems can be too sophisticated to be efficiently
applied. Others pay more attention to designing efficient
algorithms for a specific kind of sensors, like cameras.
Cameras are widely used for various applications of mobile
robots because of their advantages over other sensors, e.g.
being low cost and light weight, having large detection range
and rich features, etc. Visual-SLAM has also been a popular
topic in the robotics community, especially since Kinect-like
RGB-D cameras were brought to public.

Visual SLAM systems have achieved accurate results, pro-
ducing 2D or 3D maps and providing accurate localization
in static indoor environments. In visual SLAM systems,
pose tracking is maintained by detecting and tracking visual
features in sequential images. Since real world is inherently
unpredictable, environments can be highly dynamic and

unpredictable for mobile robots [23]. In such scenarios, the
pose tracking of visual SLAM could be affected by visual
features of dynamic objects. Loop-closure detection is also
crucial for visual SLAM. When a robot has returned to a
previously visited area after having exploring new terrains
for a certain period of time, loop-closure detection can
be used to efficiently correct the pose drift of the pose
estimates. However, if there are textured dynamic objects in
environments, robots are more likely to miss loop closures
or to detect false-positive loops.

The above mentioned problems in visual SLAM can be
solved by removing dynamic objects from the images before
they are used for SLAM. Thus, the accuracy of pose tracking
and loop-closure detection can be improved. Moreover, a
static 3D map without dynamic objects can be achieved.
In this paper, we address how to remove dynamic objects
from point clouds and RGB-D images when a Kinect sensor
is also moving. In order to find candidate dynamic objects
in color images, we retrieve image differences between two
selected successive images and find out the candidate regions
of dynamic objects, with the assistance from the correspond-
ing depth images. Furthermore, we extensively utilize the
information from the point clouds produced from the RGB-
D images to finally decide the image regions corresponding
to the dynamic objects, which will be removed from both
the RGB-D images and the point cloud.

In the rest of the paper, related work on visual SLAM and
dynamic-object detection are reviewed in sect. II. Technical
approach is explained in sect. III, followed by experiments
and results in sect. IV. Finally, conclusions and future work
are presented in sect. V.

II. RelatedWork

In robotics, mapping and localization are often coupled
together. Therefore, simultaneous localization and mapping
(SLAM) was proposed for solving it [20], [21]. Over
three decades, researchers have developed a large num-
ber of SLAM systems using different kindes of sensors,
likely range scans[3], monocular cameras[5], [6], stereo
cameras[15], and RGB-D cameras. In RGB-D SLAM work
[1], [8], [9], researchers have developed efficient match-
ing algorithms, pose estimation approaches, loop-closure
algorithms. In their work, the effects of dynamic objects

978-1-4673-9104-7/15/$31.00 ©2015 IEEE

Proceeding of the 2015 IEEE
International Conference on Information and Automation

Lijing, China, August 2015

1600

to SLAM are often ignored, resulting these objects to be
included in the maps of SLAM systems. Recently, real-time
appearance-based mapping (RTABMap) [12], [13], [14], a
SLAM system with a global loop closure detection approach,
is developed. It is able to construct large-scale and long-
term map. Its global map is updated when a loop-closure is
detected. However, without loop-closures been detected, it
can not remove dynamic objects from the static map.

Motion detection, i.e. detecting motions of objects relative
to the background, is a basic step in security monitoring
system. There are many approaches proposed to adapt to
different scenarios, such as image difference, background
subtraction [7], optical flow[22], etc. The work in [19]
presents a algorithm for detecting dynamic objects from a
static background based on frame difference. The absolute
difference is calculated between the consecutive frames.
Then, the difference image is binarized. Finally, dynamic
objects are marked in the binary image. Similar work is
accomplished in [17]. However, this work considers the
effect of the speed of a object: When the speed is two low,
parts of the dynamic object will be missing in the binary
image. Double-difference image was proposed in [11] to
solve the above mentioned problem. A double-difference
image is obtained by an AND operation between image
frames k and k−1, and then between frames k and k+1. So
motion regions of double-difference image keeps the shape
of the dynamic objects at time t.

Most dynamic-object-detection algorithms are proposed
for static cameras and can be easily affected by illumination
changes. The work in [10] presents a solution to detecting
dynamic objects under motions of both objects and sensors.
Moving objects are estimated using image difference and
adaptive particle filter. However, this method is designed for
2-dimensional (2D) scenarios. The method proposed in [16]
can remove moving objects in 3-dimensional (3D) space. It
finds moving objects by segment out individual clusters and
analyze the spatial relationship of each cluster. If the position
of an object with respect to other objects changes between
two views, this object is considered a moving object. The
major limitations of this approach are that it uses only
depth images from a static camera, and it can hardly be
implemented for real-time applications.

III. Technical Approach

Overview of our approach is shown in Fig. 1. Considering
a moving camera, we transform two selected successive
images to the same image coordinate frame through feature
matching and compute the homography matrix. Then, we
detect candidate image pixels of dynamic objects in the
RGB images using image differences between two gray-
scale images converted from two RGB images. Depth in-
formation is used to locate the objects in each of the two
images. The point cloud produced from the RGB-D images
are segmented into individual clusters after filtering and

downsampling, so that we can find the correspondences
between dynamic objects and individual clusters. Finally,
we obtain static scene by removing dynamic objects from
the point clouds and their corresponding RGB-D images.

A. Obtaining pixel correspondences

Due to motions of the RGB-D camera mounted on a
mobile robot, to make image difference between two RGB
images, we need to transform them to the same image
coordinate system. This can be done by calculating their
homography matrix with feature matches. First, both RGB
images are converted to gray-scale images for further image
processing. Then, we match two gray-scale images using
image features. Researchers have proposed a number of
image features, like SIFT, SURF and ORB. The SIFT and
SURF features have been successfully applied in object
detection and recognition applications. However, they are
not efficient enough for real-time visual SLAM applications.
As a result, computationally-efficient feature detector and
descriptor are required. Thus, We use ORB feature [18]
for feature matching to find the homography between two
images.

ORB features are computed in both gray-scale images at
time-stamp Tk−1 (the last frame), as illustrated in Fig. 2a,
and time-stamp Tk (the current frame), as shown in Fig. 2b.
The time interval ∆T = Tk −Tk−1 should be able to ensure
sufficient movement of the dynamic objects between the last
frame and the current frame. In this paper, we chose ∆T to
be one-third second. Brutforce matching with cross checking
is used to find feature matches between the two images. The
result of feature matching is illustrated in Fig. 2c. Since false
matches and matches corresponds to features of dynamic
objects may affect the accuracy of the final homography,
we utilize RANdom SAmple Consensus(RANSAC) [4] al-
gorithm when computing homography using the OpenCV
[2] implementation.

After the homography is calculated, we can find the pixel
correspondences between the two images by transforming
the last frame to the current image coordinate system. We
use PL = (xL,yL) to denote a point which is located in the last
frame. PL is augmented to be PL = (xL,yL,1) by adding 1 as
the last element. Corresponding point of PL in the current
frame is denoted by PC = (xC ,yC ,1). The relation between
PL and PC , as shown in Fig. 3, is decided by the homography
matrix

H =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 , (1)

as

PC
′ = s

 xC
yC
1

 =
 h11 h12 h13

h21 h22 h23
h31 h32 h33

 xL

yL
1

 . (2)

The corresponding coordinates in the current frame is PC =

PC
′/s, where s is a scale factor.

1601

Figure 1: Overview of our approach for removing dynamic objects from RGB-D images.

(a) (b)

(c)

Figure 2: Feature matching result using ORB features. (a)
the last frame. (b) the current frame. (c) the result of feature
matching, with few false matches.

B. Motion detection

Before computing image difference between two images,
Gaussian filter is applied to each gray-scale image to reduce
image noises. With the pixel correspondences calculated
from Eq. 2, we can obtain the absolute image differences
between the two images. The resulted image differences are
binarized with a threshold Ti. When the absolute difference
of a pixel is larger than a threshold, this pixel is labeled in
bright as a candidate pixel of a dynamic objects, and other-
wise, labeled in dark. Unfortunately, many factors may cause
incorrect binarization, e.g. illumination changes. To improve
the accuracy of dynamic-object detecting, combining depth
information in the binarization is a straightforward choice
for RGB-D cameras. Another reason that we need depth

Figure 3: Pixel correspondences through homography be-
tween two images. With the homography, two images are
transformed to the same image coordinate system for com-
puting image differences.

information is that we have to find out in which frame does
a dynamic object exists and results a candidate pixel in the
binary image: in the last frame, or in the current frame. For
each candidate pixel, we compare its depth values in the last
depth image and the current depth image as follows.

Let the depth value of a candidate pixel P to be d(xL,yL) in
the last frame, the depth value to be d(xC ,yC) in the current
frame, and the depth difference d′ = d(xL,yL) − d(xC ,yC),
the location of the dynamic object locates is defined in
the following manner: If d′ > Td, where Td is a predefined
threshold, the dynamic object resulting P should be locating
in the current frame. If d′ < −Td, the dynamic object should
be locating in the last frame. For other cases, the candidate
pixel P should be considered as a false detection. After we
process each candidate pixel in this way, two binary images
can be obtained: One labeling candidate pixels of dynamic
objects in the last frame, the other one labeling that in the
current frame. The results of this process will be shown in
Sect. IV. The motion detection algorithm is shown in another
form in Algorithm 1.

1602

Algorithm 1 Motion Detection

Require: lastImage, currentImage, lastDepth
currentDepth, Td

Ensure: lastFrame, currentFrame
1: for each row ∈ [0, lastImage.rows−1] do
2: for each col ∈ [0, lastImage.cols−1] do
3: xL← row,yL← col,z← 1
4: x

′ ← h11 · xL +h12 · yL +h13
5: y

′ ← h21 · xL +h22 · yL +h23
6: s← h31 · xL +h32 · yL +h33
7: xC ← x

′
/s,yC ← y

′
/s

8: di f f ← abs(PL(xL,yL)−PC(xC ,yC))
9: dL← depth(xL,yL)

10: dC ← depth(xC ,yC)
11: if dL −dC > Td then
12: currentFrame(xC ,yC)← 255
13: lastFrame(xL,yL)← 0
14: else if dC −dL > Td then
15: lastFrame(xL,yL)← 255
16: currentFrame(xC ,yC)← 0
17: else
18: lastFrame(xL,yL)← 0
19: currentFrame(xC ,yC)← 0
20: end if
21: end for
22: end for

C. Planar extraction

For a low-cost Kinect sensor, the precision of the raw
point cloud, as produced directly from a color image and its
associated depth image, would be affected by various factors,
e.g. edges of surfaces and measurement noises. Thus, before
extracting planar segments of the point cloud Cp, pre-
processing is applied to smooth it. First, a passthrough
filter is applied to Cp to obtain a filtered point cloud C f :
points will be discarded from Cp if their depth values are
larger than a predefined threshold Tc. Furthermore, due to
measurement noises, some points may have much larger
depths than their neighbors. We assumed all points follow a
normal distribution with a mean distance µ and a standard
deviation σ to its κ neighbors. Let µ′ and σ′ be the
global mean value and the global deviation, respectively,
if µ > µ′ +σ′, the points would be removed from the raw
point cloud. When we perform a simple operation on each
point of a cloud, the computational complexity is O(n)
(n being the number of points). If we search κ neighbors
of a point, the computational complexity would be O(κn).
Consequently, reasonably reducing the number of points
in the point cloud to reduce the computational complexity
would benefit real-time applications. This can be done by
downsampling the point cloud. Therefore, the filtered point
cloud C f is divided into multiple voxels with a specific

resolution Tv, the centriod of all points inside each voxel
forms a downsampled point cloud Cd.

When dynamic objects are located on the ground, remov-
ing horizontal planes from the point cloud could ensure that
these objects can be segmented out from the static scene
later. Here, we consider most indoor scenarios in which the
ground is a planar floor. In our system, we assume that the
RGB-D camera is mounted in parallel with the ground plane
within a specified angular deviation δα. Then, let α be the
angle between the normal direction of a planar segment Cs
in Cd and the vertical direction in the camera coordinate
system, if α < δα, Cs will be removed from Cd, forming a
new point cloud Cr. Planes are extracted using a RANSAC
scheme. Only those planes, which have more than a certain
number of points locate in, would be considered in this step.

D. Point cloud segmentation

To retrieve point-cloud segments corresponding to inde-
pendent objects, point cloud Cr need to be divided into
several parts. Distances among points are taken into account
to get individual segments by using Euclidean cluster extrac-
tion algorithm, which is implemented in PCL. The clustering
process begins with selecting a point pi. If the distance of
pi to its neighbor pn is smaller than a threshold Te, we
add pn to a queue Q. Then, we search the neighbors of all
points in the queue Q and add their neighbors to Q, if again,
the above mentioned distances is smaller than Te and such
neighbors are not added to Q yet. All the points in Q will
be considered to be in one cluster when no new neighbors
can be found. Finally, all points in the point cloud Cr are
divided into different segments via iterations of of the above
operations. To speed up this clustering process, we use k−d
tree to search neighbors of each point. Because we have
removed the outliers and ground planes in the point cloud,
potential dynamic objects could be segmented out from the
background by setting proper threshold Te.

E. Determining dynamic objects

Candidate image pixels and point-cloud segments of dy-
namic objects are expressed in different coordinate systems.
Registering these two kinds of data requires to transform
them to a same coordinate system to extract dynamic 3D
objects. Assuming a pin-hole camera model, each point-
cloud segment S i could be projected to the image coordinate
frame. The rectangular bounding box of the projection of S i
can be extracted as Bi, with its four corners marked as xmin,
xmax, ymin and ymax. If the depth value of a candidate pixel
in Bi is within the minimum depth zmin and the maximum
depth zmax of S i, we consider this candidate pixel is valid
for a dynamic object corresponding to S i. If the number
of candidate pixels located in Bi meets certain conditions,
we consider the point-cloud segment S i represents a true
dynamic object. Detail algorithm of the above process is
shown in Algorithm 2, where point (x′,y′,z′) is represented

1603

in the camera coordinate system, point (x0, y0) is represented
in the image coordinate systems, and B3d represents the 3D
bounding box.

Algorithm 2 Determining dynamic objects

Require: count is the number of clusters
fx fy cx cy is the camera model

1: for each i ∈ [0,count−1] do
2: for each j ∈ [0,cluster.size−1] do
3: x0← (x′ ∗ fx)/z′+ cx;
4: y0← (y′ ∗ fy)/z′+ cy
5: B3d ← (xmin, xmax,ymin,ymax,zmin,zmax)
6: end for
7: num← 0
8: for each row ∈ [0,currentImage.rows−1] do
9: for each col ∈ [0,currentImage.cols−1] do

10: if currentFrame(row,col) == 255 then
11: if row >minx and row <maxx and col >miny

and col < maxy then
12: if cluster(row,col) > minz and

cluster(row,col) < maxz then
13: num← num+1
14: end if
15: end if
16: end if
17: end for
18: end for
19: if num > Tr then
20: return true
21: end if
22: end for

F. Completing and removing the dynamic objects

Till now, point-cloud segments (S i) of dynamic objects
have been found in the point cloud Cr. However, these
segments have been downsampled for efficient-computation
purpose. Hence, we need to turn to the original point cloud
Cp to extract the complete dynamic objects. We project each
segment S i to a specific plane. Then, the convex hull of the
projection can be retrieved, which is the minimum convex
set in Euclidean space.

The convex hull Hi corresponding to S i can be used to
form a polygonal prism Pi, which is a 3D regular prism
with Hi as its polygonal base. The height of Pi is set to
be able to extract the complete object corresponding to S i.
All the points in Cp which locate inside of Pi are assumed
to form a complete dynamic object. Finally, we can remove
dynamic objects from the original point cloud, and thus, the
corresponding image pixels in the RGB-D images.

IV. Experiments and Results

To evaluate the performance of detecting and removing
dynamic objects, using a Thinkpad X240 2.10 GHz Intel

Core i7-4600U 8G memory, we run our algorithm in four
different indoor scenarios. In the experiments, a Kinect
sensor is mounted on a turtlebot. When the mobile robot
moves in the scenes, dynamic objects in the field-of-view of
the camera are also moving.

The results of image differences, as obtained in
Sect. III-B, are shown in Fig. 4c. The bright pixels in Fig. 4c
are the candidate pixels of dynamic objects. Then, utilizing
the depth information from depth image, these bright pixels
are assigned to dynamic objects in the last frame and in the
current frame, as illustrated in Fig. 4d and Fig. 4e.

The results of removing dynamic objects from original
point clouds are shown in Fig. 5. Referring to the original
images in the first two rows, we can find that dynamic
objects are removed from the corresponding point clouds
in the two bottom rows. In the first scene corresponding to
the column of Fig. 5a, the average size of feature matches
is 143, and the success rate of removing complete dynamic
objects is 83.33%. In second scene shown in the column of
Fig. 5b, more valid textures can be extracted, resulting 303
average feature matches and a success rate of 95.83%.

In the third scene, we perform our algorithm in two
scenarios, with a single dynamic object and with two
different dynamic objects, the results of which are shown
in Fig. 5c and Fig. 5d, respectively. The average size of
feature matches is 200 in this scene. There are 4.54%
dynamic objects failed to be removed in the single dynamic-
object scenario, which can be mainly caused by incorrect
homography between the last and the current images. When
there are no enough good feature matches, or the matches
are dominated by false ones, incorrect homography may be
resulted in. In the dual-dynamic-object scenario, 76.67% of
the dynamic objects are successfully removed completely,
and another 20% are removed partially. The incomplete
segmentation of the point cloud corresponding to dynamic
objects will result in incomplete removal of the objects. The
ground truth data are obtained by manually analyzing the
processed images.

The statistics of the above object-removing results are also
depicted in Fig. 6. Despite doing experiments in the above
different scenarios, robust performance of our algorithm can
be achieved. We run our algorithm with the same parameters
in all scenes. Some important parameters mentioned in
Sect. III are shown in Table. I.

Average time costs of different processes of our algorithm
are listed in Table. II. The process of calculating homog-
raphy matrix includes image matching and computing ho-
mography matrix. Computing point cloud means calculating
the point cloud Cp from a pair of RGB-D images. Fur-
thermore, the time cost of finding candidate pixels includes
the processes in Section. III-B, while removing ground
plane includes the processes in Section. III-C. Moreover,
removing dynamic objects represents all the processes in
Section. III-D, Section. III-E and Section. III-F. Extracting

1604

(a) (b) (c) (d) (e)
Figure 4: Motion detection results based on image differences and depth images. (a) The last image, as described in Sect. III-A.
(b) The current image. (c) The results of image differences. (d) Assigning the candidate pixels in (c) to dynamic objects in
the last image and (e) to that in the current image.

Table I: Parameters

Ti Td(m) Tc(m) Te(m) Pi(m) Tv(m) Tr

40 0.2 0.1 0.06 0.020 0.2 3000

point-cloud segments included in Section. III-F costs the
largest portion of the time. Nevertheless, since the total time
cost is only around 0.45 second, it would not affect the real-
time performance of the mapping of a SLAM system, which
usually has a much lower frequency than that of the pose
tracking task in SLAM.

(a) (b) (c) (d)

Figure 5: The results of removing dynamic objects. Top
two rows: original point cloud produced by the last RGB-D
images and the current RGB-D images, from top to bottom,
respectively. Bottom two rows: point clouds after removing
dynamic objects from the original point clouds.

V. Conclusions and future work

We proposed a solution to remove dynamic objects from
RGB-D images of a moving Kinect sensor. By eliminating
dynamic objects from the original point cloud, the static

(a)

Figure 6: The number of dynamic objects been removed in
the image sequences of different scenarios. The number of
objects been entirely removed is marked as Entire, while
partially-removed objects marking with Portion and those
failed to be removed marked with Fail.

Table II: Time costs

Modules Running Time(ms)

Calculating homography matrix 73.24

Computing point cloud 10.25

Finding candidate pixels 22.27

Downsampling point cloud 40.40

Removing ground plane 6.75

Removing dynamic objects 335.10

Total Time 448.01

scene can be built for RGB-D mapping. Unlike most of those
existing motion detection algorithms which are designed
for static cameras, we solve the problem by computing
image differences after transforming two images into a same
coordinate system with their homography. Depth information
is also utilized for more accurate motion detecting. Point
clouds are used to finally locate dynamic objects. In our
experiments, we achieved robust performance of removing
dynamic objects in different indoor scenarios.

1605

In future work, we will integrate our algorithm into a
RGB-D SLAM system to achieve better mapping perfor-
mance, and thus, better pose tracking performance. On the
other hand, camera-pose estimates from the SLAM system
can be used to facilitate more robust homography computing
to improve the success rate of removing dynamic objects.

Acknowledgment

This work is supported by Research on Foundations of
Major Applications, Research Programs of NUDT, Project
ZDYYJCYJ20140601.

References

[1] Cedric Audras, A Comport, Maxime Meilland, and Patrick
Rives. Real-time dense appearance-based slam for rgb-d
sensors. In Australasian Conf. on Robotics and Automation,
2011.

[2] Gary Bradski and Adrian Kaehler. Learning OpenCV: Com-
puter vision with the OpenCV library. ” O’Reilly Media,
Inc.”, 2008.

[3] Christian Brenneke, Oliver Wulf, and Bernardo Wagner. Us-
ing 3d laser range data for slam in outdoor environments. In
Intelligent Robots and Systems, 2003.(IROS 2003). Proceed-
ings. 2003 IEEE/RSJ International Conference on, volume 1,
pages 188–193. IEEE, 2003.

[4] H Cantzler. Random sample consensus (ransac). Institute for
Perception, Action and Behaviour, Division of Informatics,
University of Edinburgh, 1981.

[5] Andrew J Davison, Ian D Reid, Nicholas D Molton, and
Olivier Stasse. Monoslam: Real-time single camera slam.
Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 29(6):1052–1067, 2007.

[6] Ethan Eade and Tom Drummond. Scalable monocular slam.
In Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, volume 1, pages 469–476.
IEEE, 2006.

[7] Ahmed Elgammal, David Harwood, and Larry Davis. Non-
parametric model for background subtraction. In Computer
VisionECCV 2000, pages 751–767. Springer, 2000.

[8] Felix Endres, Jürgen Hess, Nikolas Engelhard, Jürgen Sturm,
Daniel Cremers, and Wolfram Burgard. An evaluation of the
rgb-d slam system. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 1691–1696. IEEE,
2012.

[9] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren,
and Dieter Fox. Rgb-d mapping: Using kinect-style depth
cameras for dense 3d modeling of indoor environments. The
International Journal of Robotics Research, 31(5):647–663,
2012.

[10] Boyoon Jung and Gaurav S Sukhatme. Detecting moving
objects using a single camera on a mobile robot in an outdoor
environment. In International Conference on Intelligent
Autonomous Systems, pages 980–987, 2004.

[11] Yoshinari Kameda and Michihiko Minoh. A human motion
estimation method using 3-successive video frames. In
International conference on virtual systems and multimedia,
pages 135–140, 1996.

[12] Mathieu Labbé and François Michaud. Memory management
for real-time appearance-based loop closure detection. In
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ In-
ternational Conference on, pages 1271–1276. IEEE, 2011.

[13] Mathieu Labbe and Francois Michaud. Appearance-based
loop closure detection for online large-scale and long-term
operation. Robotics, IEEE Transactions on, 29(3):734–745,
2013.

[14] Mathieu Labbe and François Michaud. Online global loop
closure detection for large-scale multi-session graph-based
slam. In Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on, pages 2661–2666.
IEEE, 2014.

[15] Thomas Lemaire, Cyrille Berger, Il-Kyun Jung, and Si-
mon Lacroix. Vision-based slam: Stereo and monocular
approaches. International Journal of Computer Vision,
74(3):343–364, 2007.

[16] Krystof Litomisky and Bir Bhanu. Removing moving objects
from point cloud scenes. In Advances in Depth Image
Analysis and Applications, pages 50–58. Springer, 2013.

[17] Ester Martı́nez-Martı́n and Ángel P del Pobil. Motion
detection in static backgrounds. In Robust Motion Detection
in Real-Life Scenarios, pages 5–42. Springer, 2012.

[18] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. Orb: an efficient alternative to sift or surf. In Com-
puter Vision (ICCV), 2011 IEEE International Conference on,
pages 2564–2571. IEEE, 2011.

[19] Nishu Singla. Motion detection based on frame difference
method. International Journal of Information & Computation
Technology., ISSN, pages 0974–2239.

[20] Randall Smith, Matthew Self, and Peter Cheeseman. Estimat-
ing uncertain spatial relationships in robotics. In Autonomous
robot vehicles, pages 167–193. Springer, 1990.

[21] Randall C Smith and Peter Cheeseman. On the representation
and estimation of spatial uncertainty. The international
journal of Robotics Research, 5(4):56–68, 1986.

[22] Ashit Talukder and Larry Matthies. Real-time detection of
moving objects from moving vehicles using dense stereo and
optical flow. In Intelligent Robots and Systems, 2004.(IROS
2004). Proceedings. 2004 IEEE/RSJ International Conference
on, volume 4, pages 3718–3725. IEEE, 2004.

[23] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Proba-
bilistic robotics. MIT press, 2005.

1606

