
International Conference on Real-time Computing and Robotics 
Changsha, China, June 23-26, 2015 

 

RESEARCH PAPER  

3D Modeling of Indoor Environments Using 

Multiple Kinects  

Ruibin Guo
1* , Dongxiang Zhou

 1, Keju Peng 1
 and Yunhui Liu

2 

 

 

 

1 INTRODUCTION 

With the prevalence of Kinect sensors, it is 

convenient to obtain RGB-D image databases. The 

availability of such rich images presents enormous 

opportunities for mapping or 3D modeling. Many 3D 

scene reconstruction systems by using Kinect have been 

published in recent years. Henry
[1,2]

 etc. resent a RGB-D 

mapping method, a framework for using RGB-D 

cameras to generate dense 3D models of indoor 

environments, which is a full 3D mapping system that 

utilizes a joint optimization algorithm combining visual 

features and shape-based alignment. The KinectFusion 

algorithm
[3,4]

 introduced by Newcombe and Izadi can be 

used for accurate real-time mapping of complex and 

arbitrary indoor scenes in variable lighting conditions, 

it's a frame-to-global method and it can reduce error 

propagation compare to frame-to-frame ones, it 

maintained the single scene model with a global 

volumetric, truncated signed distance function(TSDF) 

representation. All of the methods mentioned above use 

only one Kinect, and there are lots of extended methods 

based on RGB-D mapping and KinectFusion. 

Considering to the view limitation of single Kinect, 

some relevant works had been published to achieve a 

complete 3D model by multiple Kinects in different 

views. Wang
 [5]

 etc. proposed a novel plane-sweeping 

based algorithm to handle interference caused by 

multiple cameras in the projected light overlap regions. 

Alexiadis
[6]

 implemented a real-time, full 3D 

reconstrction of moving foreground objects from 

multiple consumer depth cameras. 

Despite these methods have shown lots of 

encouraging results, some shortcomings still exist. RGB-

D Mapping only uses two consecutive frames to estimate 

the motion of the camera, this method is always used in 

SLAM, while it isn't real time and its accuracy is not 

very high. The KinectFusion system works well for 

mapping medium sized room, however, the 

reconstruction of large-scale models require too much 

memory and the drift of very large exploratory 

sequences is inevitable. The multiple Kinect 3D 

reconstruction systems
[7,8]

 published usually get surfaces 

measurement under different views, but the extrinsic 

parameters between different Kinects have been pre-

aligned. 

In this paper we use 2 GPU-based volumes' cyclical 

reconstruction for large indoor environments to extend 

the bound-limitation of KinectFusion, the spatially 

extended mapping is real time by one volume performs 
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Abstract 

This paper proposes a novel 3D modeling system to reconstruct dense and full indoor environments by the 

registration of different-region reconstruction volumes obtained by using single or multiple Kinect sensors 

simultaneously. We highlight two key techniques for applying the extension of KinectFusion to the modeling 

problem: (i) 2 GPU-based volumes' cyclical reconstruction for large indoor environments using only single Kinect 

in real time; (ii) dynamic calibration for Multiple Kinects by combining the features of sparse key-frames and 

Simplified-ICP algorithm. Experimental results show the effectiveness and scalability of our proposed approach. 
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dense tracking&mapping while the other performs the 

raycasting. To achieve a full 3D model of indoor 

environment efficiently, we use multiple Kinects to 

perform the modeling process simultaneously, and these 

Kinects have not been pre-calibrated, their extrinsic 

parameters are achieved by computing its key frames' 

location in the relative Kinect's coordinate system 

dynamically, we get the transformation matrix between 

different region reconstructions built by multiple Kinects, 

and realize 3D registration. 

2 CYCLICAL RECONSTRUCTION USING 2 VOLUMES 

In this section we will introduce KinectFusion 

system briefly, and describe our 2 GPU-based volumes' 

cyclical reconstruction algorithm(shown in Fig.1), which 

is the extension of KinectFusion, this improved 

algorithm works well for large-scale models in real time. 

2.1 Background 

KinectFusion is a real-time 3D reconstruction and 

interaction system using a moving standard Kinect. 

There are four main stages in the system pipeline: a) 

Depth Map Conversion; b) Camera Tracking; c) 

Volumetric Integration; d) Raycasting. The incoming 

depth map from the camera is registered incrementally 

into the global TSDF
[9]

 using ICP algorithm. The TSDF 

is a volumetric data structure that encodes implicit 

surface by storing the signed distance to the closest 

surface at each voxel up to a given truncation distance 

from the actual surface position. The raycasting process 

extract views of the implicit surface for rendering and 

tracking. According to the project of 

KinectFusionExplorer, each voxel in volume occppies 4 

bytes memory of GPU, if the size of volume is 

384384384, the whole volume needs 256MB GPU 

memory. The commodity graphics usually have not 

enough memory for large-scale indoor environments. 

2.2 Cyclical reconstruction 

Camera pose estimation and surface reconstruction 

in KinectFusion is restricted to the region that pre-

defined volume, we use cyclical reconstruction of 2 

GPU-based volumes to solve the restriction on pre-

defined boundaries. We represent the camera pose at 

time i  by iP , composed of a rotation 3iR SO  and a  

RGB-D Frame

 VolumeⅠ  VolumeⅡ 

 
            (a) (b)       (c) 

Fig.1 Cyclical reconstruction process：(a) the input RGB-D frame; (b) 2 

volumes for cyclical  reconstruction, if the camera pose's movement exceeds 

threshold p , the function of these 2 volumes changed; (c) the calculated 3D 

point cloud by Raycasting. 

translation 
3

it R . We define 2 cubic volumes in the 

same size, each volume's side length in voxels sv  and 

the resolution of the reconstruction is 128 voxelPerMeter, 

the dimension in meters dv  is available in Eq. 1. If we 

set the voxelsPerMeters as 128, thus the TSDF volume 

represents a physical volume of space, e.g. usually 3m 

cube. 

128

s
d

v
v 

                                 
(1) 

In the beginning stage, initially 0 =R I  and 

0 =t (0,0,0), only volumeⅠperforms camera tracking 

and volumetric integration, when the camera pose jP  

exceeds a movement threshold p  at time j , volumeⅠ

performs raycasting and we can get the point cloud 

which will be stored in a CPU memory, we set the initial 

camera pose of volume Ⅱ  as jP , and volume Ⅱ 

performs camera tracking and volumetric integration 

simultaneously. At time k , when ( )k jD P P p   , 

volume Ⅱ stops camera tracking and start raycasting, 

calculate point cloud to be stored in a CPU memory, 

volume Ⅰ do the camera tracking and volumetric 

integration again by setting camera pose as kP . The 

cyclical reconstruction algorithm is shown as follows. 

Algorithm 1. Cyclical reconstruction using one Kinect 

Initialization: TSDF volumeⅠ&Ⅱin GPU memory 

                 
0P  camera pose at time 0 

                p  movement threshold 

                _ 0=pre refP P
 
reference camera pose 
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Input: 
irgb  RGB image 

       
id   depth image 

for each 
irgb -

id  frame at time i 

   if (
_( )i pre refD P P p   )  

      
_ =pre ref iP P   

      raycast to extract implicit surface in volumeⅠ(Ⅱ) 

      set initial camera pose of volumeⅡ(Ⅰ) as 
iP  

      camera tracking&volumetric integration TSDF in volumeⅡ(Ⅰ) 

   else 

      camera tracking&volumetric integration TSDF in volumeⅠ(Ⅱ) 

      raycast to extract implicit surface in volumeⅡ(Ⅰ) 

The movement threshold p , composed of a 

rotation R  and a translation ( , , )t x y z     . In the 

cyclical reconstruction, we only used the accumulated 

translation threshold in each axis. 

3 DYNAMIC CALIBRATION OF MULTIPLE KINECTS 

It is more efficient to achieve a full 3D model of 

indoor environment by using multiple Kinects 

simultaneously. Unlike the proposed methods, in which 

the positions of multiple Kinects are fixed and the 

calibration procedure need to be done only once. Our 

presented method does not have the restriction on 

Kinects' positions, we estimate the extrinsic parameters 

of these Kinects by computing their similar keyframes' 

location in the relative Kinect's coordinate system 

dynamically, and this extrinsic parameters will be used 

in 3D registration for reconstructions built by different 

Kinects, Fig.2 outlines our proposed method using 2 

Kinects, three or more models' registration can be 

extended. 

 KinectⅠ
Cycical 

Reconstruction

Keyframes 
selected

 KinectⅡ
Cycical 

Reconstruction

Keyframes 
selected

Dynamic 
calibration

Point cloudⅠ

Point cloudⅡ

Extrinsic 
parameter

3D 
Registration

Full 3D model

 
Fig.2 Full 3D models' building using two Kinects. 

The key to realize the registration of multiple 

models is the computation for transformation matrix. To 

achieve this purpose, we can use point clouds' 

registration directly, i.e. ICP algorithm. While it's well 

known that the coarse registration of different point 

clouds is hard to estimate if the models' positions have 

not been pre-calibrated. So we use both depth and color 

images to align the point clouds obtained by multiple 

Kinects. 

3.1 Sparse Keyframes selected 

Our cycical reconstruction algorithm is the 

extension of KinectFusion, which is a real-time 

technology, if we choose every n-th frame as the 

keyframe simply, the computation required for the 

matching between frames grows quickly. Considering to 

the fact that we can get the 'groundtruth' Kinect pose in 

the reconstruction procedure, our method utilizes the 

Kinect's spatial movement to select keyframes. 

Kinect 
Trail

Keyframes

Keyframes

X

Z

Y

 
Fig.3 Keyframes selected sample. 

Unlike the keyframes selected using visual features' 

match in RGB-D mapping, we select a frame as 

keyframe whenever the accumulated rotation or 

translation of Kinect pose is above a threshold, and we 

record its current Kinect Pose at the same time. The 

accumulated rotation threshold measured by Euler angles 

( , , )      and accumulated translation 

( , , )x y z   . 

In this section, we will describe the details about 

dynamic calibration for N  Kinects. Supposed that we 

use N  Kinects to reconstruct the environment, and 

obtained N  models separately. We set the 1st model 

built by Kinect 1 as the reference, to achieve a full model 

of the indoor environment, the rest -1N  models should 

be aligned to the reference one. The keyframes of model 

1 defined as 
11 11 12 1{ , ,.... }NS f f f , 1nf  represents the 

-n th  keyframe, contains a RGB image and a depth 

image, its corresponding camera pose 1np , 1N  is the 

number of keyframes in model 1. Similarly, the 

keyframes of model k  is defined as 

1 2{ , ,.... }
kk k k kNS f f f , kN  is the number of keyframes 
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in model k , knp  represents the corresponding camera 

pose of keyframe knf . 

To estimate the extrinsic parameter between model 

1 and model k , composed of a rotation 1kR  and a 

translation 1kT , we measure the similarity of each frame 

in 1S  and 2S  by their visual feature. 

3.2 Similarity measurement 

In order to differentiate the similarity between 1if  

and kjf , we use SIFT features to measure it. SIFT  

features are invariant to image scale and rotation, which 

perform reliable matching between different views of an 

object or scene, first presented by David G.Lowe. The 

SIFT features' extraction contains:(a) Detection of scale-

space extrema; (b) Accurate keypoint localization; (c) 

Orientation assignment; (d) The local image descriptor. 

After getting the SIFT descriptors of two images, 

we use KNN match method, where we set k=2. For a 

feature point in image 1if , several candidate feature 

points in image kjf  are similar to it, assuming that the 

smallest distance between  this point and one of its 

candidate feature points is 1d , the second smallest 

distance is 2d , when it meets: 

1

2

( 0.8)
d

Th Th
d

  
                        

(2)

 
We define this pair of points are matched feature 

points temporally, shown in Fig.4. 

 
Fig.4  Keypoint Matching using 2NN method 

Note that there are some wrong matched points, we 

add the restriction of the third smallest distance 3d  and 

the fundamental matrix F , srcx  and dstx  are the pre-

matched points' coordinates, the optimization result 

shown in Fig.5. 

1

3

'

0.85 ( 0.8)

dst src

d
Th Th

d

x F x Th


  


   

           
     

(3) 

 
Fig.5  Keypoint matching result after rejecting outliers 

Thus, the matched points' number 1

mn

kN  is defined 

as the similarity measurement for frame m  in 1S  and 

frame n  in kS . 

3.3 Extrinsic parameter 

After the similarity measurement between 1S  and 

kS , we can get the most similar frames 1mf  and knf  by 

1

1 1
1,2...
1,2...

max ( )

k

mn ij

k k
i N
j N

N N




                       

(4)

 
The keyframe contains a RGB image and a depth 

image, but their initial image size are not the same, we 

need adjust color to the same space as depth, shown in 

Fig.6, so that we can get the depth information of per-

pixel in RGB image. 

  
(a) (b) 

Fig.6 Alignment for RGB image and depth image.(a) the aligned RGB 

image; (b) the depth image, the red pixels are the invalid depth 

information 

Assuming that the coordinate of SIFT feature point 

in RGB image 1mf  plane is 1

i

mx


, its corresponding 3D 

point is 1

i

mX


, the matched point's coordinate in image 

knf  represents as 
i

knx


 and the corresponding 3D point is 

i

knX


, so 1

i

mX


 and 
i

knX


 are the corresponding 3D points 
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for point clouds 1mModel  and knModel  generated by the 

frame 1mf  and knf  separately, thus we obtain 1

mn

kN  pairs 

of corresponding 3D points. 

For the registration of 1mModel  and knModel , 

1mModel  and knModel  are the sub-part of 1Model  and 

kModel , we use the simplified Iterative Closet Point 

(ICP) algorithm to achieve the transformation matrix 

[ ]R T , shown in Fig.7, the 'simplified' means that we 

have skipped the regular step 1: Finding the closet point 

in the reference point cloud, for the reason that we have 

obtained the closet point pairs by matching their visual 

feature. 

  
(a) (b) 

Fig.7 Registration for point clouds. (a) Pre-registration; (b) 

Registration result. The point cloud in red color corresponds to the 

frame 
1m

f , the green one corresponds to the frame 
knf . 

From Section 3.1, we know that the camera pose of 

frame 1mf  in 1Model  is 1mp , and the camera pose of 

frame knf  in kModel  is knp , after registration, the 

camera pose of frame knf  in 1Model  is computed as 

follows: 

1 1[ | ]n

k mp R T p 
                         

(5) 

The extrinsic parameter to realize the registration 

for point clouds 1Model  and kModel  is: 

1 1 1

1

[ | ] ( )

( ) [ | ]

n

k k kn k

kn m

R T Invert p p

Invert p R T p







          
(6) 

( )knInvert p  represents the pose of kModel 's origin in 

the coordinate system of local camera knf . Thus, the 

registration of 1Model  and kModel is as follows: 

1 1 1[ | ]fin k k kModel Model R T Model  
      

(7) 

For N  Kinects, the full model of indoor 

environment is: 

1 1 1

2,3,....

[ | ]fin k k k

k N

Model Model R T Model


   
  

(8) 

4 EXPERIMENTAL RESULTS 

To verify the effectiveness of our algorithm, we 

performed experiment in laboratory environment. We 

realized the modeling for large scale indoor environment 

by using cyclical reconstruction in real time with single 

Kinect, and the movement threshold 

( , , )=(1,1,3)t x y z     . We used 4 Kinects to 

reconstruct our laboratory environment, and defined the 

1st Kinect as the reference one, the rest modeling results 

were aligned to the reference one. The experimental 

program running on Inter(R) Core(TM) i7 CPU 2.80GHz 

Window8 platform, 2G GPU memory, the compiler is 

VS2012, and we used Kinect 2.0. 

In the process of cyclical reconstruction, we 

selected keyframes of 1Model
 
and recorded its 

corresponding pose, shown in Fig.8. The red line is the 

sensor's trail, and the black nodes represents the 

keyframes' pose. We have done some test for dynamic 

calibration, the left of matched images is the keyframe of 

1Model , and the right ones are arbitrarily captured 

images. 

 
Fig.8 The trail of keyframes and dynamic calibration with 

arbitrary images. 

Besides the Kinect 1 performed the reconstruction 

of 1Model , the rest 3 Kinects do the reconstruction for 

the desks and sub-corridor, we used the proposed 

method to do the registration of the 4 models, the result 
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is shown in Fig.9. The ground truth size of our 

reconstruction area is 18 6m m . 

  
(a) (b) 

Fig.9 Modeling results. (a) Cyclical reconstruction result using Kinect 1;(b) 

The full model of indoor environment using 4 Kinects 

5 CONCLUSIONS 

This paper presents a cyclical reconstruction for 

indoor environment using only one Kinect in real time, 

and we introduce dynamic calibration for Multiple 

Kinects by combining the sparse key-frames features' 

matching and Simplified-ICP algorithm. It effectively 

overcomes the shortcoming of bounding box limitation 

in KinectFusion,  and it is scalability in laboratory 

environment. In the future work, we will try to realize 

the communication between different Kinects' modeling 

process, and realize the real time registration for the 

modeling of indoor environment.  
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