文章  ( 16 )
访问计数 146506 (自2016年5月)
News
0?1470885445
guoruibin TO  micROS | News
发布时间:11/09/2016 15:49
更新时间:11/09/2016 15:49

Intorduction

In the proposed method, GPU-based SIFT features is used to realize real-time detection and matching between consecutive frames, their corresponding 3D points are optimized by comparing and fusing IMU data to improve odometry estimation stability, then keyframes are selected for incremental mapping, the graph optimization and moving least squares algorithm are applied to the dense reconstruction. To achieve a full 3D model of indoor environment, we realize the registration for over-lapped models by combining the features of key-frames and Simplified-ICP algorithm.

We plan to use the improved 3D SIFT feature points detection method, which combine with 3D RoPs feature descriptor to realize the estimation for the extrinsic parameters of over-lapped models, the K-Nearest Neighbor and Random Sample Consensus algorithms are used to optimize the accuracy of matched 3D feature points. We will make our code publicly available soon.

                    paper                  video                  code(coming soon...)

Acknowledgment

This work was supported by National University of Defense Technology under Project Code ZDYYJCYJ20140601.



( 44.7 MB) guoruibin, 11/09/2016 15:48
回复 ︿
用户头像
登录后可添加回复
0?1470885445
dingbo TO  micROS | News
发布时间:11/01/2016 23:42
更新时间:11/01/2016 23:44

Repository

https://github.com/cyberdb/micROS-cloud


Introduction

MicROS-cloud is a cloud robotic platform which supports the direct deployment of ROS software packages onto the cloud. Basically, it can be regarded as a PAAS platform which adopts the ROS application model. A ROS package can be converted into a cloud service automatically. The robotic applications can access the cloud service remotely in an on-demand style through a WebSocket protocol.


The service access is purely based on a cloud service paradigm, which means that you need not concern ROS master and other configurations. Multiple robots can access a service simultaneously, for example, to build their own map respectively. The robotic applications which access the cloud services also need no modification, because Cloudrid can generate a stub ROS package with the same interface of the original ROS package, which acts as a local proxy of the remote cloud service.


By adopting the docker container technology in the back-end, a ROS package which is orignally designed for a single robot can serve multiple robots simultaneously by dynamically instantiation of the servant in the cloud. And by specifying the resource demand of the ROS package (e.g., mem, CPU, etc.), the quaility of a service can be assured by the internal mechanisms of MicROS-cloud.


Please contact us through siteen@outlook.com or bding@msn.com. Any feedback would be greatly appreciated.


Release notes

v0.10 [2016-08-31]

  1. Initial open source release
回复 ︿
用户头像
登录后可添加回复
0?1470885445
王彦臻 TO  micROS | News
发布时间:06/13/2016 10:09
更新时间:06/13/2016 10:11

This is an announcement for micros_swarm_framework, developed by Xuefeng, Yanzhen, and Xiaodong. It is a ROS-based programming framework for swarm robotics. Its goal is to facilitate ROS users in developing applications of robot swarms, by providing essential mechanisms, such as abstraction of swarms, swarm management, various communication tools, and a runtime environment, within the standard ROS ecosystem.


Documentation can be found on ROS Wiki: https://wiki.ros.org/micros_swarm_framework. Source code for the framework and demos in the Stage simulator can be found on GitHub: https://github.com/xuefengchang/micros_swarm_framework.

回复 ︿
用户头像
登录后可添加回复
0?1470885445
王彦臻 TO  micROS | News
发布时间:06/13/2016 10:01
更新时间:06/13/2016 10:01
The paper "Autoscanning for coupled scene reconstruction and proactive object analysis" by Kai Xu et al. was accepted to SIGGRAPH Asia 2015. More details can be found on the Publication page.
回复 ︿
用户头像
登录后可添加回复
0?1470885445
王彦臻 TO  micROS | News
发布时间:06/13/2016 09:50
更新时间:06/13/2016 09:50

Two papers from the micROS Team were accepted to PRICAI 2016:

1) ALLIANCE-ROS

2) Multi-level occupancy grids

More details can be found on the Publication and Projects pages.

回复 ︿
用户头像
登录后可添加回复